長期保存果実酒びん 品質規格

平成18年6月19日 制定令和7年7月1日 改訂

長期保存果実酒びん品質規格を作成するにあたって

最近消費者の嗜好が多様化するにともない、各種容器もその例にもれず、品質が著しく多岐に わたって来た昨今、消費者・使用者に対して責任のもてる長期保存果実酒びん製品を提供し、安 心してご使用頂けるよう品質を向上していかなければならないと考える。

日本ガラスびん協会においては、通常一般ガラスびんの品質規格を制定され、長きにわたり活用されてきているが、改めて長期保存果実酒びんにおいては、明確な品質規格が必要となってきた。

そこで、日本硝子製品工業会として、長期保存果実酒びんもまた当工業会内で製造する商材であるとの原点に立ち返り、日本ガラスびん協会のガラスびんの品質規格・基準を一部適用し、今日の品質に対応できるよう、本規格・基準を制定する。しかしながら一朝一夕にあらゆる規格を網羅して完璧を期することは困難であり、今回は必要最低限の基本となる規格・基準を制定した。

本規格を作成するにあたっては、下記に示す基本的考えにもとづいて行った。

- (1) 日本硝子製品工業会および日本ガラスびん協会加盟各社の現時点での生産技術、工程能力を勘案して現実に適合したものとする。
- (2) 計量法、その他で既に制定され、また今後されるであろうものについては当然遵守する。 従って、今後時宜に応じて改正・追加を積み重ね一層の充実を期したいと考えている。
 - 付 記 この規格についての意見または質問は、日本硝子製品工業会へ連絡して下さい。

<一般社団法人 日本硝子製品工業会>

〒169-0073 東京都新宿区百人町 3-21-16 日本ガラス工業センター3F

TEL 03-5937-5861

FAX 03-5389-7010

E-mail mailto:glass@glassman.or.jp

Web Site https://www.glassman.or.jp/

品質記録	長期保存果実酒びん品質規格	改訂日
		令和7年7月1日

NO	制定年月日	項目	改訂理由	承認	作成
	改訂年月日				
1	平成 18 年 6 月 19 日 令和 7 年 7 月 1 日	5.3.2 試験装置	変更点: 2mm 厚⇒1.8mm~2.1mm 厚 クッションフロアー実態に合わ せて変更	日本硝子製品 工業会 技術委員会	長期保存果実酒 びん品質規格 改訂検討委員会
2	平成 18 年 6 月 19 日 令和 7 年 7 月 1 日	6.1 水充填垂直落下 強度試験方法 解説	変更点: 2mm 厚⇒1.8mm~2.1mm 厚 クッションフロアー具体例 東リ(株)製 CFTIS8019 製造中止 に伴い、見直し修正	日本硝子製品 工業会 技術委員会	長期保存果実酒 びん品質規格 改訂検討委員会
3	平成 18 年 6 月 19 日 令和 7 年 7 月 1 日	6.2 (6) JIS Z 8801	変更点: 最新のものをホームページ等に て確認する旨を追記	日本硝子製品 工業会 技術委員会	長期保存果実酒 びん品質規格 改訂検討委員会
4	平成18年6月19日 令和7年7月1日	7.1 主な関係法規・ 規格等	変更点: (3)日本工業規格→日本産業規格 令和元年7月1日の名称変更を 反映 詳細はホームページ等にて確認 する旨を追記	日本硝子製品 工業会 技術委員会	長期保存果実酒 びん品質規格 改訂検討委員会
5	平成 18 年 6 月 19 日 令和 7 年 7 月 1 日	7. 2 7. 3 7. 4	変更点: 関係法規、規格等の詳細を削除	日本硝子製品 工業会 技術委員会	長期保存果実酒 びん品質規格 改訂検討委員会

目 次

1	適	用範囲 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	L
2	材	料	L
3	強	度	L
3.	1	熱衝撃強度 ・・・・・・・・・・・・・・・・・・・・・ 1	L
3.	2	ひずみ	L
3.	3	水充填垂直落下強度 · · · · · · · · 1	L
4	ガ	ラスびんの色調・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
4.	1	表示方法 · · · · · · · · · · · · · · · · · · ·	2
4.	2	基準厚	2
4.	3	測 定 器	2
4.	4	測定用サンプルガラス・・・・・・・・・・・・・・・・・・・・・・・・ 2	2
4.	5	表示值	2
4.	6	色調規格値 ・・・・・・・・・・・・・・・・・・・・・・・・・ 2	2
5	測:	定および試験方法・・・・・・・・・・・・・・・・・・・・・・・・ 3	}
5.	1	熱衝撃試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
5.	2	ひずみ測定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
5.	3	水充填垂直落下強度試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	}
5.	4	アルカリ溶出試験方法 (粉末法) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Į
5.	5	コードの測定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
6	測:	定および試験方法解説 ・・・・・・・・・・・・・・・・・・10)
6.	1	水充填垂直落下強度試験方法 解説10)
6.	2	アルカリ溶出試験方法 (粉末法) 解説 ・・・・・・・・・・・・・・・・・・・・・・・・ 10)
7	参	考	3
7.	1	主な関係法規・規格等・・・・・・・・・・・・・・・・15	3
7.	2	食品、添加物等の規格基準について ・・・・・・・・・・・ 15	3
7.	3	日本薬局方について ・・・・・・・・・・・・・・・・・・ 14	1
7.	4	引用・関連 J I S · · · · · · · · · · · · · · · · · ·	1
8	策	定検討委員名簿 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1

長期保存果実酒びん品質規格

1 適用範囲

この品質規格は、家庭において梅酒などの果実酒を作製・保存されることを前提として製造・販売される長期保存果実酒びん¹⁾²⁾³⁾で、未使用⁴⁾のガラスびんについて規定する。

- 注1) 長期保存果実酒びんにおいて、一体成形された取っ手付ガラスびんは対象としない。
- 注2) 長期保存果実酒びんにおいて、角びんなどの変形ガラスびんは対象としない。
- 注3) 長期保存に適した以下の構造または機能を有する適切な蓋がある。
 - ・内外の2重蓋構造もしくは、適切なパッキンとロック機能および内部圧力を適切に 逃がす機能。
- 注4) 未使用のガラスびんとは、製造後出荷するまでのものをいう。

2 材 料

長期保存果実酒びんには、 $SiO_2 \cdot Na_2O \cdot CaO \cdot MgO \cdot Al_2O_3$ などの無機酸化物を主成分とするガラスを用いなければならない。

なお、原料として鉛・カドミウム・クロム・水銀等の重金属 および ヒ素 を意図して使用しないこと。

また、アルカリ溶出量は、日本薬局方:第1法(通称:粉末法)に拠って 2.00ml 以下とする。

3 強 度

3. 1 熱衝擊強度

熱衝撃強度は5.1熱衝撃試験方法により試験したとき42℃以下の温度差で割れないこと。

3. 2 ひずみ

ひずみは5.2 ひずみ測定方法により測定したときひずみ番号5を超えないこと。

ガラス中のコードによるひずみについては、例えばコードの存在する位置によっても危険性の判断が異なるので、規格として特に数値は挙げないが、破損につながるような強いひずみ(例えば、4.9MPa以上)を持つコードは存在しないこと。

3. 3 水充填垂直落下強度

水充填垂直落下強度は 5.3 水充填垂直落下強度試験方法により試験したとき 10 c m以下の 落差で割れないこと。

4 ガラスびんの色調

4. 1 表示方法

表示方法は CIE 表色方法に従い、主波長(λd)、刺激純度(Pe)、明度(Y)をもって表わす。

4. 2 基準厚

基準厚は表1の数値とする。

表 1 基準厚

色	名	厚み(mm)
無	色	10

4. 3 測定器

測定器は積分球を備えた分光光度計を用いる。

4. 4 測定用サンプルガラス

- (1) コードの少ないガラスを用いる。
- (2) サンプル精度
 - (a) 平行度

平行度は入射面と出射面に関し、長さ 30mm に対し肉厚の差が 0.05mm 以内とする。

(b) 表面粗さ

表面粗さは鏡面仕上げとする。

- (c) 肉厚
 - ① 0.01mm まで測定可能なマイクロメーターを用い、長さ方向の中央と、その両端計3ヶ所を測定し、平均値にて表わす。
 - ② 20mm 厚に近いサンプルを用いて測色し、4.2 に規定する基準厚に換算して色調表示を行う。

4. 5 表示値

表示値は分光光度計の透過率より、Y、x、y を出し、色度図を用い、主波長 (λ d)、刺激純度 (Pe)、明度 (Y) を出す。その場合の色度図は、CIE 色度図を用いねばならない。

4. 6 色調規格値

色調規格値は表2のとおりとする。

表 2 色調規格値

区	分	主波長 λ d(nm)	刺激純度 Pe(%)	明度 Y(%)
無	色	550~585	2.3 以下	83 以上

⁽注) 主波長(λd)は参考値とする。

5 測定および試験方法

5. 1 熱衝擊試験方法

びんの熱衝撃強度は JIS S 2304 (炭酸飲料用ガラスびんの熱衝撃試験方法) の 3.1 通過試験により試験する。

5. 2 ひずみ測定方法

びんのひずみは JISS 2305 (炭酸飲料用ガラスびんのひずみ測定方法) により測定する。

5. 3 水充填垂直落下強度試験方法

5.3.1 適用範囲

この規格は、長期保存果実酒びんの水充填垂直 落下強度試験方法について規定する。

5.3.2 試験装置 (図 1. 参照)

落下面は 25mm 厚の水平を出した鉄板床とし、その上に 1.8mm~2.1mm 厚のクッションフロアーを敷く。試料は、透明プラスチック円筒内にて落下させる。(びんと透明プラスチック円筒はお互いて干渉しないにと)



図 1.水充填垂直落下強度試験装置の一例

なお、透明プラスチック円筒は、5cm 毎の高さに 線を引いておく。

5.3.3 試 料

長期保存果実酒びんに正規表示容量の8割の水を充填し、所定のキャップ(中栓・外蓋)・取っ手など付属品を取り付けたものを試料とし、検体数は30以上とする。なお試験時の試料は室温とする。

5.3.4 試験方法

長期保存果実酒びんの水充填垂直落下強度試験方法は、以下の通りとする。落下高さとは、試料底面とクッションフロアー面との距離をいう。

(1) 鉄板上に敷いたクッションフロアーに水を流し、ガラス屑等を洗い流し、その後余分

な水を除去する。

- (2) 透明プラスチック円筒をクッションフロアー上に置く。
- (3) 試料の取っ手部分(吊り下げ紐)を保持しながら、透明プラスチック円筒内に入れ、所定の落下高さで保持し、静止状態から落下させる。
- (4) 試験は、落下高さ5cmから実施し、破損するまで5cm毎高さを上げ実施する。
- (5) 各水準での落下回数は1回とするが、クッションフロアー面の傷付きが酷くなったら新しく取り替えること(おおむね3本破損毎)。

5.3.5 記 録

記録には次の事項を含まなければならない。

- (1) 試験年月日
- (2) 試料びん名
- (3) 試料数
- (4) 試験結果
 - ① 試験をした落下高さ
 - ② 各高さにおける破損数

5. 4 アルカリ溶出試験方法 (粉末法)

5.4.1 適用範囲

この規格は、ガラス容器のアルカリ溶出(粉末法)試験方法について規定する。

5.4.2 試験装置

試験装置は次の条件を備えていなければならない。

- (1) ふるい ふるいは JIS Z 8801 (標準ふるい) の径 150mm の標準ふるいを用いる。ただ し、やむを得ず上記のふるいがない場合は、必ず JIS Z 8801 に定められたふるいの検定 方法により、合格したものを用いること。
- (2) 溶出装置 硬質 1 級ガラス、または、石英ガラス製の 200ml 三角フラスコを用い冷却器 をつけること。
- (3) 加熱装置 加熱装置は、溶出装置の三角フラスコの首下まで入れるのに十分な深さを有する沸騰水浴を使用し、99℃以上を保つこと。
- (4) 試薬 試薬は、JISの試薬を用いること。

5.4.3 試 料

(1) 試料の調整 供試ガラス容器の内外を蒸留水でよく洗い、乾燥したのち粗く砕いて、その $30{\sim}40{\rm g}$ をとる。これを鉄製乳ばち(やむを得ない場合は、磁製もしくはこれに類するもの)で粉砕し、12 号ふるい($1,400\,\mu$ m)を通らないものは再びもとの乳ばちに移し、同様の操作を試料量の 2/3 が 12 号ふるいを通るまで繰り返す。次に 12 号ふるいを通過し

た粉末を合せ、24 号ふるい(710 μ m)および 42 号ふるい(350 μ m)を用い、3 回/秒 の周期で約 50 秒ふるう。

次いでそのふるいを回しながら、約 10 秒間を中の試料が飛び出さない程度にふるいの側面を軽く叩く。同様の操作を 5 回繰り返したのち、24 号ふるいを通り、42 号ふるいを通らない粉末を光沢紙上にまきひろげ、磁石を用いて混入鉄粉を十分に取り除いたのち、粉末約 7g をとる。これを適当な大きさの硬質ガラス製ビーカーに入れ、蒸留水 100ml を用いて洗い、その上澄液をすてる。同様にして 5 回の水洗いをしたのち、さらにエタノール 200ml で 5 回よく洗って微粉をとり除いてから、 $105\sim120$ ℃で乾燥し、デシケーター中で放冷する。

(2) 試料の採取量 5.4.3(1)により調整された試料から5.00 グラムを量りとる。

5.4.4 試験方法

溶出装置の 200ml フラスコ蒸留水 50ml と試料を入れ、ゆるく振り動かして試料がフラスコの底部に平均に分散するようにする。次に冷却器を取付け、沸騰水浴中で 120 分間加熱する。次にフラスコを沸騰水浴中から取り出し、ただちに流水で冷却する。内容液は 300ml の硬質三角フラスコに移し、残留物は蒸留水 20ml ずつで 3 回よく洗い、洗液は硬質三角フラスコ中の液に合せて、ブロモクレゾールグリン・メチルレッド試液 5 滴を加えて 0.01mol/1 硫酸で滴定する。

(備考) 滴定の終点は、液の緑色が微灰青色を経て、微灰赤色に変わる点とする。

5.4.5 空試験

試料を加えずに5.4.4と同様の試験方法により、空試験値を求める。

5.4.6 記 録

試験結果は、空試験結果を差し引いた滴定 ml 数で示す。

5.5 コードの測定方法

5.5.1 本法制定の目的

ガラスびんのコードのひずみ量を測定することにより、窯の適正温度、適正引揚げ、窯の劣化等を把握し管理するとともに、びんの品質管理に活用することを目的とする。

5.5.2 適用範囲

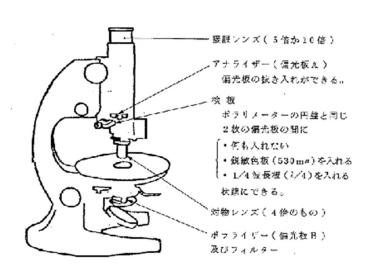
この規格はガラスびんのコードの測定方法について規定する。

5.5.3 測定装置

測定装置は次の条件を備えていなければならない。

- (1) 偏光顕微鏡、あるいはポラリメーターを使用すること。
- (2) コンペンセーター(補整器) ……石英楔(バビネ型補整器など)、セナルモン補整器など
- (3) カッター……リング状にカットできること。
- (4) 浸 漬 皿……リング状の試料が浸漬されるに十分な大きさを有すること。
- (5) 浸 液……下記のいずれかを使用する。

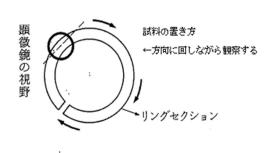
モノクロベンゼン、フタル酸ジメチル、フタル酸ジオクチル、水。


(6) スケール……マイクロメーター、ノギス。

5.5.4 試 料

- (1) レヤーエンドの任意の位置より採取したびんを、カッターでリング状に切断する。
- (2) 切断するリングセクションは、切断面と胴壁面が垂直になるように切り出す。
- (3) 試料の厚みは、無色であるので 12mm 以下とする (参考:無色以外は 8mm 以下)。
- (4) リングセクションはコードの無い部分、または小さい部分をカッターで一部分を切断し 拘束によるひずみを解放しておく。

5.5.5 測定方法

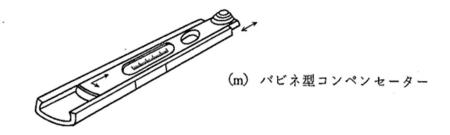

ここでは、偏光顕微鏡による測定方法を説明し、ポラリメーターによる測定については、JIS S 2305 を参照されたい。メーカの取扱説明書にも記載があるので参考にするとよい。

偏光顕微鏡も原理的にはポラリメーターと同じであり、従って測定方法も、ほぼ同じである。ただ、偏光顕微鏡では、試料を拡大して見るために、ポラリメーターでは見えないような細いコードまで観察でき、ひずみ量をより正確に測定できる等の利点がある。

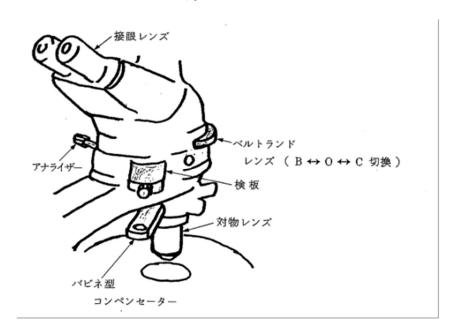
反面、試料全体を一度に見ることができないので、コードの分布量を知りにくいという欠点がある。

- 1) 切断したリングもしくはサドルセクションを作製し、シャーレに入れてフタル酸ジメチル等の浸液を満たす。
- 2) 顕微鏡の光源を点灯し、視野が明るくなるように顕微鏡下部の鏡を調整する。
- 3) 試料片を入れたシャーレを顕微鏡の試料台にのせる。
- 4) アナライザーを入れ、検板は空洞(中央位置)にして、常に試料が斜め右上がり45°に

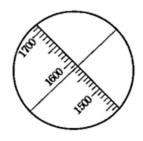
なるように置いて動かし試料全体を観察する。 コードは白く光るすじに見える。


発生したコードがテンションコードかコンプレッションコードかを知るためには、左図のようにコードの伸びている方向が斜め右上がり45°となるように置く。この状態で検板を挿して鋭敏色板(530m μ)を入れる。

この時、青色に見えるのがテンションコード、黄色に見えるのがコンプレッションである(試料を斜め左上がり 45°に置くとこの関係が逆になる)。


5)コードの伸びる方向を斜め右上がり 45° に保ちながら、コードひずみ量の測定を行なう。 測定には、コンペンセーターを用いるが、ここではバビネ型コンペンセーターおよびセナルモン型コンペンセーターについて使用法を説明する。

≪バビネ型コンペンセーターによる測定法≫


1) アナライザーを入れ、検板は中央の空洞位置にする。また、顕微鏡試料台の下部に青色のフィルターが入っていることを確認する。

2) 対物レンズ上の溝にバビネ型コンペンセーターを入れ、ベルトランドレンズ部をCに切り換える(対物レンズ上に溝のないもの、ベルトランドレンズ部にCのないものではバビネ型コンペンセーターは使えない)。

3) ベルトランドレンズ部をCにしてピントを合わせると、バビネ型コンペンセーターの目 盛が見えるので、コンペンセーターをスライドさせてbの値に合わせる。

bの値は、コンペンセーター固有の値であり、コンペンセーターの箱に記されている値を用いる。この値は使用するフィルターにより異なるが、通常青色のフィルターを用いるので λ m μ = 589. 3のときのbの値を使う。

- 4) ベルトランドレンズ部をOにもどすと、再び試料片が見えるので、この状態でコードが 最も暗くなるまで、コンペンセーターを動かす(テンションコードの場合はコンペンセ ーターを引き出す方向に、コンプレッションコードの場合は押し込む方向に動かすこと になる)。
- 5) ベルトランドレンズ部をCにしてピントを合わせて、コンペンセーターの目盛を読みとる (この値をXとする)。テンションコードの場合はX<Y0、コンプレッションコードの場合はY0、となっているはずである。
- 6) 次に、試料片を取り出し観察した個所の厚みをノギスで測る。〔試料厚み: t(c m)〕
- 7) コードのひずみ量は次式で表される。

コードひずみ量 (MPa) =
$$\frac{9.80665 \times 10^{-2} \times |b-X|}{t \times 2.4}$$

ただし、 9.80665×10^{-2} : kg/cm² \rightarrow MPa への変換係数

t : 試料厚み(cm)

2.4 : ソーダライムガラスの光弾性定数

≪セナルモンコンペンセーターによる測定法≫

- 1) 検板を抜きとって、セナルモンコンペンセーター を入れる。
- 2) 顕微鏡試料台の下部に緑色のフィルターを入れる。
- 3) アナライザーを入れると、コードの部分が緑色に

光って見えるので、アナライザーを回してコードが最も暗くなる位置にする。この時のアナライザーの回転角度 θ を読みとる。

※アナライザーか0°~180°まで回転できる顕微鏡を使用した場合

コードは常に斜め右上がり 45° に置く。

- ・テンションコード アナライザーを 0° から回して行くとコードは暗くなっていく。
- ・コンプレッションコード アナライザーを 0° から回して行くと、コードは明るくなっていくので、いったん アナライザーを $1~8~0^\circ$ まで回し、 $1~8~0^\circ$ から小さくなる方向へ回してコードが 最も暗くなるようにする。
- コードのひずみ量は次頁の式で表わされる。

コンプレッションコードひずみ量(MPa) =
$$\frac{9.80665 \times 10^{-2} \times 3 \theta}{t \times 2.4}$$
テンションコードひずみ量(MPa) =
$$\frac{9.80665 \times 10^{-2} \times 3(180 - \theta)}{t \times 2.4}$$

ただし、 9.80665×10^{-2} : kg/cm² \rightarrow MPa への変換係数

: 緑色のフィルター使用時:540nm(光源波長)/180° 3

: コードが最も暗くなった時のアナライザーの回転角(°) θ

: 試料厚み(cm) t

: ソーダライムガラスの光弾性定数 2.4

※アナライザーが 0°~90°までしか回転しない顕微鏡を使用した場合

まず、コードを斜め右上がり 45° に置く──

・テンションコード

アナライザーを 0° から回して行くとコードは暗くなってゆくので、最も暗くなった時 の角度 θ を読みとる。

・コンプレッションコード

アナライザーを 0° から回してもコードは 暗くならないので、コードを斜め左上がり

45° に置きなおす。

この状態で、アナライザーを0°から回し

て行くとコードは暗くなって行くので、最も暗くなった時の角度θを読みとる。

コードひずみ量はテンション、コンプレッションいずれの場合も次式で表わされる。

コンプレッションコードひずみ量 (MPa) =
$$\frac{9.80665 \times 10^{-2} \times 3 \theta}{t \times 2.4}$$

5.5.6 記 録

記録には次の事項を含まなければならない。

- (1) 測定年月日
- (2) 試料採取年月日
- (3) 試料採取場所
- (4) 試料びん名
- (5) コードのひずみ量
- (6) コードの種類

6 測定および試験方法解説

6. 1 水充填垂直落下強度試験方法 解説

5.3.2 試験装置(図1.参照)において、落下面は鉄板床上に1.8mm~2.1mm 厚のクッシ ョンフロアーを敷くとしたが、そのクッションフロアーの具体例を以下に記す。

- ·東リ(株)製 クッションフロアーCFシート 1.8mm 厚
- ・ 富双合成(株)製 スタイルフロア 1.8mm 厚

6.2 アルカリ溶出試験方法(粉末法)解説

(1) 本試験方法制定の主旨

従来試験方法として、JISR 3502 や日本薬局方第1法などが広く用いられているが、試験 条件に不明確な点があることに起因し測定値のバラツキが大きい。従って条件を明らかに し、できるだけばらつきを小さくしようとするものである。

(2) 本試験方法の適用について

本試験方法は、従来の試験方法を否定するものではなく、得意先よりすでに指定されているものはできるだけ本試験方法に切替え、また指定のない場合は本試験方法の実施を強力に勧めることを日本ガラスびん協会技術委員会で確認したものである。

(3) 変動要因とその検討内容

(a) 試料の粒度範囲と粉砕方法について

粒度範囲については、JIS と日本薬局方では右記のように異なっているが、下限については両方のうちでどちらが適当であるかは判断しにくい。しかしながら、表面積の関係から変動要因として大きいことは明確であるので、あえて $350\,\mu$ m 以下についてカットすることとした。また、大きい方については、JIS の上限 $420\,\mu$ m までとはいかにも範囲が狭くなり、実際問題としては難しいので、表 3 の粒度分布の比較を行った。

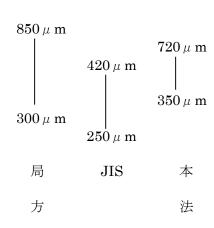


表 3 粒度分布比較

試験方法	局方(n=5)		本法(n=7)	
級分け	\overline{X}	\sqrt{V}	\overline{X}	\sqrt{V}
850~710 μ m	19.6%	4.7	_	_
710~590 μ m	22.5%	2.8	31.9%	3.0
590~500 μ m	16.3%	1.4	24.1%	1.9
500~420 μ m	17.4%	2.2	24.9%	2.1
420~350 μ m	14.0%	2.6	18.4%	3.0
350~300 μ m	9.8%	2.3	_	_

この表 3 から明らかなように日本薬局方の $850\sim710\,\mu$ m のばらつきは大きく、カットすることにする。

一方粉砕方法について表 3 の数字からは、その有意差は認めにくいが、これはテストということに起因するものと思われる。

しかしながら現行法のものでは不十分であり、また、変動要因の中でも上位に属することは確実なので、より詳細に規定したものである。

(b) 試料の洗浄について

本来水で洗うことについては、ガラス表面のアルカリが除かれることから除外すべきで

あるが、粗洗の意味で、その量および回数を規定することにより残した。当然エタノール についても量および回数規定は日本薬局方および JIS より前進したものであり、変動を少 なくするものと確信する。

(c) 加熱装置の保持温度について

JISでは99℃以上となっているが、日本薬局方では沸騰水というあいまいな表現を用いている。会員のデータによれば表4のようになっており、温度規定は絶対必要である。

温度 (℃) 95 96 97 99

表 4 加熱装置保持温度とアルカリ溶出量

(d) 溶出装置の冷却器取り付けについて

溶出量

(ml)

JIS では冷却器取り付けを規定しているが、日本薬局方にはない。常識的に見ても有無の差は当然あるものと考えるが、表5に1例を示す通り、溶出用フラスコの容量規定とともに冷却器を付すことは必要である。

1.66

1. 72

1.85

表 5 冷却器の有無とアルカリ溶出量

1. 42

冷 却 器	有	無	差
溶出量 (ml)	1. 59	1. 77	0. 18

(e) 溶出装置を三角フラスコに規定することについて

JIS では丸底フラスコを用いることになっているが、試料を平均に分散させる意味で丸 底フラスコの使用は除外することとした。

(f) 抽出液について

文献によれば、溶媒の pH および電導度などにより溶出量が大きく変ることが述べられており、当初案では比電導度が $1.1\sim1.3~\mu$ S/cm at 25° Cのものすなわち再蒸溜水の使用が提案されたが、その後の実験結果では以下のようになっている。

イオン交換水 → 再蒸溜水使用 1.87mlイオン交換水のみ 1.89ml

p)1 回蒸溜水使用1.42ml1.20m12 回蒸溜水使用1.49ml1.26ml

この結果では、文献(ただし表面法)で述べられているような 35%の誤差とはならない。 これについては、粉末法のようにアルカリ溶出量の比較的大きい場合、その影響は少ない との観点から、あえて規定しないことにした。

(4) その他討議の対象になった項目

(a) ふるい目の開きについて

JIS 合格品といえども、その公差範囲内のばらつきから、溶出量の変動が大きく、目開きの許容範囲の限定については、日本ガラスびん協会会員からもその必要性が指摘されているが、この間題は JIS Z 8801 の改訂まで及ぶことになるので、今回は取り上げないことにした。

(b) 試料の乾燥について

JIS では 125 $\mathbb{C}30$ 分、日本薬局方では 100 $\mathbb{C}30$ 分と異なる点を検討したが、あまり問題にならないものとして、双方の中間条件を採用した。

(c) ふるいの新旧について

ふるいの新旧を使用した場合

新しいものを用いた場合 \overline{X} = 1.60ml

旧いものを用いた場合 \overline{X} = 1.38ml

その差 0.22ml はかなり誤差としては大きいが、規定することは実際的でないので考慮外とした。

(d) 粉砕器の種類について

鉄製乳ばちを原則とするが、現実には磁製やタングステンカーバイト製のものを使用 している場合もあり、粒度分布および溶出量については共同実験の結果からも、特に問 題はないとして、やむを得ない場合として本文に付記した。

(e) フラスコの振動について

溶出装置のフラスコが振動することによる溶出量の差は次の通りであった。

振動あり \overline{X} (n=3) 1.90ml

振動なし \overline{X} (n=2) 1.77ml 差 0.13ml

この差が大きいとか、小さいとかは議論のあるところであるが、できるだけばらつきを少なくという点からは、フラスコの振動を無くすべきであり、従って種々の問題があるため本文中に明記しないが、できるだけ固定することが望ましい。

(5) 参 考

従来(日本薬局方第1法)と本試験方法について、同一ロットびんを用いて会員それぞれ 測定した結果は表6の通りであった。

区 分 日本薬局方 法 本 27 27 Ν \overline{X} 1.584ml 1.757ml MAX 1.82 ml 1.92 ml MIN 1.31 ml 1.58 ml \sqrt{V} 0.168 0.126×100 変動 10.60 % 7.17 %

表 6 日本薬局方と本試験方法との比較

以上の内容から、当初期待したほどばらつきを少なくするまでには至らなかったが、より 良い方向であることは明白である。

なお日本薬局方で定められている溶出基準のうち融封できない容器 2.0ml は本法では 2.2ml に相当することになる。

また日本薬局方通則第2条で次のように規定している。「日本薬局方には規定する試験法

に代る方法で、それが規定の方法以上の正確さと精度さがある場合は、その方法を用いることができる。ただしその結果について疑いのある場合は規定の方法で最終判定を行う。」

(6) 参 考

本文中4頁に記載のふるいの呼称および目開きについては、最新のJIS Z 8801をホームページ等で確認のこと。

7. 参 考

7. 1 主な関係法規・規格等

- (1) 食品衛生法に基づく 食品、添加物等の規格基準
- (2) 薬事法に基づく 日本薬局方
- (3) 工業標準化法に基づく 日本産業規格 (JIS)
- ※(1)~(3)の詳細については、ホームページ等にて最新のものを確認のこと。

一般社団法人 日本硝子製品工業会

長期保存 果実酒びん 品質規格 改訂検討委員会

石塚硝子株式会社 中野 浩孝 織田 直久

アデリア株式会社 川村 昭彦

東洋ガラス株式会社 佐伯 信安 阿部 透

東洋佐々木ガラス株式会社 浅見 光昭

監修 一般社団法人 日本硝子製品工業会 技術委員会

石塚硝子株式会社 吉田 幹

東洋ガラス株式会社 玉巻 圭子

東洋佐々木ガラス株式会社 児島 淳之

興亜硝子株式会社 羽賀 憲司

日本山村硝子株式会社 札場 誠司

長期保存果実酒びん品質規格

令和7年7月1日改訂

編著者 一般社団法人 日本硝子製品工業会

長期保存果実酒びん 品質規格 改訂検討委員会

監修 一般社団法人 日本硝子製品工業会 技術委員会

発行者 一般社団法人 日本硝子製品工業会

発行所 一般社団法人 日本硝子製品工業会

東京都新宿区百人町 3-21-16 日本ガラス工業センター3F

一般社団法人 日本硝子製品工業会

TEL 03-5937-5861

FAX 03-5389-7010

一般社団法人 日本硝子製品工業会

許可無く複製配布を禁ずる。